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Phase	  transi8on/crossover	  within	  QCD	  

F. R. Brown, et al. PRL 1990 
Full lattice QCD simulation  
Because the relevant symmetry is 
explicitly broken by quark mass, symmetry 
arguments no longer imply the existence 
of a finite temperature phase transition.  

K. Fukushima and T. Hatsuda 
Rep. Prog. Phys. 2010  
Even no reliable information from the first-
principle LQCD calculation, effective chiral 
models suggest a first order chiral phase 
transition in the large density region.  
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Phase	  Diagram	  of	  QCD	  

of lattice computations of finite temperature
QCD (18), taken in conjunction with determi-
nations of Tc in step (b) (10–13), agree well with
experimental measurements on bulk hadronic
matter (19). This allows us to invert the reasoning
and extract Tc directly from the experimental
measurements in heavy ion collisions [Fig. 1,
step (c)]. The agreement of the temperature from
steps (c) and (d) along with the agreement of Tc
extracted from steps (a) and (b) with that from (c)
show the complete compatibility of a single
theory of hadron properties and of bulk QCD
matter, that is, of all nonperturbative regimes of
the strong interactions. This approach may present
a new domain of tests of the standard model of
particle physics.

The conjectured phase diagram of QCD. In
the current conjectures for the parts of the phase
diagram that is accessible with heavy ion col-
lisions (Fig. 2) (20), calculations within simpli-
fied models that mimic QCD show that at large
mB there is a first-order hadron–quark–gluon plas-
ma (QGP) phase transition. This phase bound-
ary is expected to end in a critical point at finite
mB because lattice computations (10–13) agree
with general symmetry arguments (21), which in-
dicate that at mB = 0 there is neither a first-order
nor a second-order phase transition but only a
crossover at Tc. The determination of Tc sets the
scale of the QCD phase diagram. Current best
estimates of the position of the critical point (22)
are reflected in the position indicated in Fig. 2.
Currently, the experimental focus is on an attempt
to locate the critical point and the line of phase
coexistence (23, 24).

By changing
ffiffiffiffiffiffiffi
sNN

p
, one traces out a line of

chemical freeze-out in the phase diagram, as
shown in Fig. 2. This line is parameterized through
a hadron resonance gas model (16, 17). Because
this work focuses on making a connection be-
tween QCD thermodynamic calculations and ob-
servables measured in experimental facilities,
we also show in Fig. 2 the range of mB values
covered by various experiments as one traverses
the chemical freeze-out line by changing

ffiffiffiffiffiffiffi
sNN

p
.

The solid point around mB = 938 MeV is the
location of ordinary nuclear matter (25), the best
characterized point on the phase diagram.

Comparison of experimental measurements
with lattice QCD predictions. Lattice QCD com-
putations leave open the question of a scale and
yield dimensionless predictions—for example,
for P/T 4 as a function of T/Tc and mB/T. Here, we
discuss the nonlinear susceptibilities (NLSs) of
baryons, cB

(n), of order n (26). These are the Taylor
coefficients in the expansion of P with respect
to mB at fixed T in the usual dimensionless form
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Lattice measurements of the series expansion of
the NLS in powers of mB/T are resummed by

using Padé approximants in order to give pre-
dictions for the above quantities (18). They are of
interest because they are related to cumulants of
the fluctuations of the baryon number in thermal
and chemical equilibrium in a grand canonical
ensemble.

The nth cumulant of such fluctuations, [Bn], is
given by

½Bn& ¼ VT 3Tn!4cðnÞB
T
Tc

,
mB
T

" #
ð2Þ

where V is the volume of the observed part of
the fireball. Because observed hadrons are in
thermal and chemical equilibrium at the freeze-
out, this relation should hold for cumulants of
the observed event-by-event distribution of net-
baryon number in heavy ion collisions. The cumu-
lants are often reported as the variance s2 = [B2],

the skewness S = [B3]/[B2]3/2, and the Kurtosis
k = [B4]/[B2]2. It is clear from these definitions
that the V-dependence in Eq. 2 gives the correct
volume scaling expected from the central limit
theorem. This leads to the classic extraction of
the susceptibility from fluctuations in the grand
canonical ensemble (27, 28).

There is one remaining subtlety in comparing
lattice computations with experimental data.Most
experiments are designed to measure event-by-
event net-protons. The data discussed in the cur-
rent work is from the STAR experiment at RHIC
(19), which identifies protons and anti-protons by
measuring the specific ionization energy loss of
these particles in the gas of a time projection
chamber. These measurements miss neutrons, the
other dominant part of the baryon distribution.
Thismay impose limitations on our measurement

Fig. 2. Currentconjectures
for the QCD phase dia-
gram. The phase bound-
ary (solid line) between the
normal low-temperature
hadronic phase of bulk
QCDmatter and the high-
temperaturepartonicphase
is a line of first-order phase
transitions that begins at
large mB and small T and
curves toward smaller mB
and larger T. This line
ends at the QCD critical
point, whose probable po-
sition, derived from lattice
computations, is marked
byasquare.Atevensmaller
mB, there are no phase
transitions, only a line of cross-overs (dashed line). The red-yellow dotted line corresponds to the chemical
freeze-out line from the evolution of the bulk QCD matter produced in high-energy heavy-ion collisions.
The solid point at T = 0 and mB = 938 MeV represents nuclear matter in the ground state. At large mB and
low T is the color superconductor phase (CSC) (35).
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Fig. 3. Comparison of lattice
QCD and experimental data for
(A) m1 and (B) m2. Experimen-
tally measured ratios of cumu-
lants of net-proton distributions,
m1 = Ss and m2 = ks2, are
shown as a function of

ffiffiffiffiffiffiffi
sNN

p
for

impact parameter values of less
than 3 fm for Au+Au collisions
at RHIC (19). Also plotted on the
top scale are the chemical freeze-
out values ofmB and T correspond-
ing to

ffiffiffiffiffiffi
sNN

p
as obtained from a

hadron resonance gas model,
which assumes the system to be
in chemical and thermal equilib-
rium at freeze-out (16, 17). The
prediction of such a model form1
(33) is shown as the dashed red
line. The lattice predictions for
these quantities are drawn from
a computation with lattice cutoff
of 1/a ≅ 960 to 1000 MeV and
converted to the dimensional scale of T and m by using Tc = 175 MeV.
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measurement	  VS.	  thermal	  
equilibrium,	  singularity 

STAR white paper 2014, Studying the 
phase diagram of QCD matter at RHIC 

Chemical	  freeze-‐out	  line	  VS.	  	  	  
QCD	  phase	  boundary,	  mapping 
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La?ce	  and	  Experimental	  approaches	  	  

of lattice computations of finite temperature
QCD (18), taken in conjunction with determi-
nations of Tc in step (b) (10–13), agree well with
experimental measurements on bulk hadronic
matter (19). This allows us to invert the reasoning
and extract Tc directly from the experimental
measurements in heavy ion collisions [Fig. 1,
step (c)]. The agreement of the temperature from
steps (c) and (d) along with the agreement of Tc
extracted from steps (a) and (b) with that from (c)
show the complete compatibility of a single
theory of hadron properties and of bulk QCD
matter, that is, of all nonperturbative regimes of
the strong interactions. This approach may present
a new domain of tests of the standard model of
particle physics.

The conjectured phase diagram of QCD. In
the current conjectures for the parts of the phase
diagram that is accessible with heavy ion col-
lisions (Fig. 2) (20), calculations within simpli-
fied models that mimic QCD show that at large
mB there is a first-order hadron–quark–gluon plas-
ma (QGP) phase transition. This phase bound-
ary is expected to end in a critical point at finite
mB because lattice computations (10–13) agree
with general symmetry arguments (21), which in-
dicate that at mB = 0 there is neither a first-order
nor a second-order phase transition but only a
crossover at Tc. The determination of Tc sets the
scale of the QCD phase diagram. Current best
estimates of the position of the critical point (22)
are reflected in the position indicated in Fig. 2.
Currently, the experimental focus is on an attempt
to locate the critical point and the line of phase
coexistence (23, 24).

By changing
ffiffiffiffiffiffiffi
sNN

p
, one traces out a line of

chemical freeze-out in the phase diagram, as
shown in Fig. 2. This line is parameterized through
a hadron resonance gas model (16, 17). Because
this work focuses on making a connection be-
tween QCD thermodynamic calculations and ob-
servables measured in experimental facilities,
we also show in Fig. 2 the range of mB values
covered by various experiments as one traverses
the chemical freeze-out line by changing

ffiffiffiffiffiffiffi
sNN

p
.

The solid point around mB = 938 MeV is the
location of ordinary nuclear matter (25), the best
characterized point on the phase diagram.

Comparison of experimental measurements
with lattice QCD predictions. Lattice QCD com-
putations leave open the question of a scale and
yield dimensionless predictions—for example,
for P/T 4 as a function of T/Tc and mB/T. Here, we
discuss the nonlinear susceptibilities (NLSs) of
baryons, cB

(n), of order n (26). These are the Taylor
coefficients in the expansion of P with respect
to mB at fixed T in the usual dimensionless form
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Lattice measurements of the series expansion of
the NLS in powers of mB/T are resummed by

using Padé approximants in order to give pre-
dictions for the above quantities (18). They are of
interest because they are related to cumulants of
the fluctuations of the baryon number in thermal
and chemical equilibrium in a grand canonical
ensemble.

The nth cumulant of such fluctuations, [Bn], is
given by

½Bn& ¼ VT 3Tn!4cðnÞB
T
Tc

,
mB
T

" #
ð2Þ

where V is the volume of the observed part of
the fireball. Because observed hadrons are in
thermal and chemical equilibrium at the freeze-
out, this relation should hold for cumulants of
the observed event-by-event distribution of net-
baryon number in heavy ion collisions. The cumu-
lants are often reported as the variance s2 = [B2],

the skewness S = [B3]/[B2]3/2, and the Kurtosis
k = [B4]/[B2]2. It is clear from these definitions
that the V-dependence in Eq. 2 gives the correct
volume scaling expected from the central limit
theorem. This leads to the classic extraction of
the susceptibility from fluctuations in the grand
canonical ensemble (27, 28).

There is one remaining subtlety in comparing
lattice computations with experimental data.Most
experiments are designed to measure event-by-
event net-protons. The data discussed in the cur-
rent work is from the STAR experiment at RHIC
(19), which identifies protons and anti-protons by
measuring the specific ionization energy loss of
these particles in the gas of a time projection
chamber. These measurements miss neutrons, the
other dominant part of the baryon distribution.
Thismay impose limitations on our measurement

Fig. 2. Currentconjectures
for the QCD phase dia-
gram. The phase bound-
ary (solid line) between the
normal low-temperature
hadronic phase of bulk
QCDmatter and the high-
temperaturepartonicphase
is a line of first-order phase
transitions that begins at
large mB and small T and
curves toward smaller mB
and larger T. This line
ends at the QCD critical
point, whose probable po-
sition, derived from lattice
computations, is marked
byasquare.Atevensmaller
mB, there are no phase
transitions, only a line of cross-overs (dashed line). The red-yellow dotted line corresponds to the chemical
freeze-out line from the evolution of the bulk QCD matter produced in high-energy heavy-ion collisions.
The solid point at T = 0 and mB = 938 MeV represents nuclear matter in the ground state. At large mB and
low T is the color superconductor phase (CSC) (35).
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Fig. 3. Comparison of lattice
QCD and experimental data for
(A) m1 and (B) m2. Experimen-
tally measured ratios of cumu-
lants of net-proton distributions,
m1 = Ss and m2 = ks2, are
shown as a function of

ffiffiffiffiffiffiffi
sNN

p
for

impact parameter values of less
than 3 fm for Au+Au collisions
at RHIC (19). Also plotted on the
top scale are the chemical freeze-
out values ofmB and T correspond-
ing to

ffiffiffiffiffiffi
sNN

p
as obtained from a

hadron resonance gas model,
which assumes the system to be
in chemical and thermal equilib-
rium at freeze-out (16, 17). The
prediction of such a model form1
(33) is shown as the dashed red
line. The lattice predictions for
these quantities are drawn from
a computation with lattice cutoff
of 1/a ≅ 960 to 1000 MeV and
converted to the dimensional scale of T and m by using Tc = 175 MeV.
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for 19.6 and 27 GeV, with values of 3.2 and 3.4 for κσ2 and
4.5 and 5.6 for Sσ, respectively. The significance of
deviations for 5%–10% Auþ Au data are smaller for
κσ2 with values of 2.0 and 0.6 and are 5.0 and 5.4 for
Sσ, for 19.6 and 27 GeV, respectively. Higher statistics data
for

ffiffiffiffiffiffiffiffi
sNN

p
< 19.6 GeV will help in quantitatively under-

standing the energy dependence of κσ2 and Sσ. A reason-
able description of the measurements is obtained from
the independent production approach. The data also show
deviations from the hadron resonance gas model [30,31],
which predict κσ2 and Sσ=Skellam to be unity. The effect
of decay is less than 2% as per the hadron resonance gas
model (HRG) calculations in Ref. [31]. To understand the
effects of baryon number conservation [32] and experi-
mental acceptance, UrQMDmodel calculations (a transport
model which does not include a CP) [22] for 0%–5% Auþ
Au collisions are shown in the middle and bottom panels of
Fig. 4. The UrQMDmodel shows a monotonic decreasewith
decreasing beam energy [23]. The centrality dependence of

the κσ2 and Sσ from UrQMD [23] (not shown in the figures)
closely follows the data at the lower beam energies of 7.7
and 11.5 GeV. Their values are, in general, larger compared
to data for the higher beam energies.
The current data provide the most relevant measurements

over the widest range in μB (20–450 MeV) to date for the
CP search, and for comparison with the baryon number
susceptibilities computed from QCD to understand the
various features of the QCD phase structure [6,16,17]. The
deviations of Sσ and κσ2 below the Skellam expectation
are qualitatively consistent with a QCD-based model which
includes a CP [33]. However, the UrQMD model which
does not include a CP also shows deviations from the
Skellam expectation. Hence, conclusions on the existence
of CP can be made only after comparison to QCD
calculations with CP behavior which include the dynamics
associated with heavy-ion collisions, such as finite corre-
lation length and freeze-out effects.
In summary, measurements of the higher moments and

their products (Sσ and κσ2) of the net-proton distributions
at midrapidity (jyj < 0.5) within 0.4 < pT < 0.8 GeV=c in
Auþ Au collisions over a wide range of

ffiffiffiffiffiffiffiffi
sNN

p
and μB have

been presented to search for a possible CP and signals of a
phase transition in the collisions. These observables show a
centrality and energy dependence, which are not repro-
duced by either non-CP transport model calculations or by
a hadron resonance gas model. For

ffiffiffiffiffiffiffiffi
sNN

p
> 39 GeV, Sσ

and κσ2 values are similar for central, peripheral Auþ Au
collisions, and pþ p collisions. Deviations for both κσ2

and Sσ from HRG and Skellam expectations are observed
for

ffiffiffiffiffiffiffiffi
sNN

p ≤ 27 GeV. The measurements are reasonably
described by assuming independent production of Np and
Np̄, indicating that there are no apparent correlations
between the protons and antiprotons for the observable
presented. However, at the lower beam energies, the
net-proton distributions are dominated by the shape of
the proton distributions only. The data presented here also
provide information to extract freeze-out conditions in
heavy-ion collisions using QCD-based approaches [34,35].
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FIG. 4 (color online). Collision energy and centrality depende-
nce of the net proton Sσ and κσ2 from Auþ Au and pþ p
collisions at RHIC. Crosses, open squares, and filled circles
are for the efficiency corrected results of pþ p, 70%–80%, and
0%–5% Auþ Au collisions, respectively. Skellam distributions
for corresponding collision centralities are shown in the top
panel. Shaded hatched bands are the results from UrQMD [22].
In the middle and lower panels, the shaded solid bands are the
expectations assuming independent proton and antiproton pro-
duction. The width of the bands represents statistical uncertain-
ties. The HRG values for κσ2 and Sσ=Skellam are unity [30,31].
The error bars are statistical and caps are systematic errors. For
clarity, pþ p and 70%–80% Auþ Au results are slightly
displaced horizontally.
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of lattice computations of finite temperature
QCD (18), taken in conjunction with determi-
nations of Tc in step (b) (10–13), agree well with
experimental measurements on bulk hadronic
matter (19). This allows us to invert the reasoning
and extract Tc directly from the experimental
measurements in heavy ion collisions [Fig. 1,
step (c)]. The agreement of the temperature from
steps (c) and (d) along with the agreement of Tc
extracted from steps (a) and (b) with that from (c)
show the complete compatibility of a single
theory of hadron properties and of bulk QCD
matter, that is, of all nonperturbative regimes of
the strong interactions. This approach may present
a new domain of tests of the standard model of
particle physics.

The conjectured phase diagram of QCD. In
the current conjectures for the parts of the phase
diagram that is accessible with heavy ion col-
lisions (Fig. 2) (20), calculations within simpli-
fied models that mimic QCD show that at large
mB there is a first-order hadron–quark–gluon plas-
ma (QGP) phase transition. This phase bound-
ary is expected to end in a critical point at finite
mB because lattice computations (10–13) agree
with general symmetry arguments (21), which in-
dicate that at mB = 0 there is neither a first-order
nor a second-order phase transition but only a
crossover at Tc. The determination of Tc sets the
scale of the QCD phase diagram. Current best
estimates of the position of the critical point (22)
are reflected in the position indicated in Fig. 2.
Currently, the experimental focus is on an attempt
to locate the critical point and the line of phase
coexistence (23, 24).

By changing
ffiffiffiffiffiffiffi
sNN

p
, one traces out a line of

chemical freeze-out in the phase diagram, as
shown in Fig. 2. This line is parameterized through
a hadron resonance gas model (16, 17). Because
this work focuses on making a connection be-
tween QCD thermodynamic calculations and ob-
servables measured in experimental facilities,
we also show in Fig. 2 the range of mB values
covered by various experiments as one traverses
the chemical freeze-out line by changing

ffiffiffiffiffiffiffi
sNN

p
.

The solid point around mB = 938 MeV is the
location of ordinary nuclear matter (25), the best
characterized point on the phase diagram.

Comparison of experimental measurements
with lattice QCD predictions. Lattice QCD com-
putations leave open the question of a scale and
yield dimensionless predictions—for example,
for P/T 4 as a function of T/Tc and mB/T. Here, we
discuss the nonlinear susceptibilities (NLSs) of
baryons, cB

(n), of order n (26). These are the Taylor
coefficients in the expansion of P with respect
to mB at fixed T in the usual dimensionless form
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Lattice measurements of the series expansion of
the NLS in powers of mB/T are resummed by

using Padé approximants in order to give pre-
dictions for the above quantities (18). They are of
interest because they are related to cumulants of
the fluctuations of the baryon number in thermal
and chemical equilibrium in a grand canonical
ensemble.

The nth cumulant of such fluctuations, [Bn], is
given by

½Bn& ¼ VT 3Tn!4cðnÞB
T
Tc

,
mB
T

" #
ð2Þ

where V is the volume of the observed part of
the fireball. Because observed hadrons are in
thermal and chemical equilibrium at the freeze-
out, this relation should hold for cumulants of
the observed event-by-event distribution of net-
baryon number in heavy ion collisions. The cumu-
lants are often reported as the variance s2 = [B2],

the skewness S = [B3]/[B2]3/2, and the Kurtosis
k = [B4]/[B2]2. It is clear from these definitions
that the V-dependence in Eq. 2 gives the correct
volume scaling expected from the central limit
theorem. This leads to the classic extraction of
the susceptibility from fluctuations in the grand
canonical ensemble (27, 28).

There is one remaining subtlety in comparing
lattice computations with experimental data.Most
experiments are designed to measure event-by-
event net-protons. The data discussed in the cur-
rent work is from the STAR experiment at RHIC
(19), which identifies protons and anti-protons by
measuring the specific ionization energy loss of
these particles in the gas of a time projection
chamber. These measurements miss neutrons, the
other dominant part of the baryon distribution.
Thismay impose limitations on our measurement

Fig. 2. Currentconjectures
for the QCD phase dia-
gram. The phase bound-
ary (solid line) between the
normal low-temperature
hadronic phase of bulk
QCDmatter and the high-
temperaturepartonicphase
is a line of first-order phase
transitions that begins at
large mB and small T and
curves toward smaller mB
and larger T. This line
ends at the QCD critical
point, whose probable po-
sition, derived from lattice
computations, is marked
byasquare.Atevensmaller
mB, there are no phase
transitions, only a line of cross-overs (dashed line). The red-yellow dotted line corresponds to the chemical
freeze-out line from the evolution of the bulk QCD matter produced in high-energy heavy-ion collisions.
The solid point at T = 0 and mB = 938 MeV represents nuclear matter in the ground state. At large mB and
low T is the color superconductor phase (CSC) (35).
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Fig. 3. Comparison of lattice
QCD and experimental data for
(A) m1 and (B) m2. Experimen-
tally measured ratios of cumu-
lants of net-proton distributions,
m1 = Ss and m2 = ks2, are
shown as a function of

ffiffiffiffiffiffiffi
sNN

p
for

impact parameter values of less
than 3 fm for Au+Au collisions
at RHIC (19). Also plotted on the
top scale are the chemical freeze-
out values ofmB and T correspond-
ing to

ffiffiffiffiffiffi
sNN

p
as obtained from a

hadron resonance gas model,
which assumes the system to be
in chemical and thermal equilib-
rium at freeze-out (16, 17). The
prediction of such a model form1
(33) is shown as the dashed red
line. The lattice predictions for
these quantities are drawn from
a computation with lattice cutoff
of 1/a ≅ 960 to 1000 MeV and
converted to the dimensional scale of T and m by using Tc = 175 MeV.
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of fluctuations. However, the effect of isospin
fluctuations on the shape of the net-baryon dis-
tributions is small (29). Hence, we proceeded un-
der the assumption that the shape of the net-proton
distributions reflects the net-baryon distributions
up to distortions smaller than the estimated errors
in measurements of the cumulants.

We are unable to exploit Eq. 2 directly in
heavy-ion experiments because the volume, V, is
hard to determine precisely experimentally. How-
ever, the ratios

ðm1Þ : Ss ¼ ½B3%
½B2% ¼

Tcð3ÞB

cð2ÞB

,

ðm2Þ : ks2 ¼
½B4%
½B2%

¼ T 2cð4ÞB

cð2ÞB

,

ðm3Þ :
ks
S

¼ ½B4%
½B3%

¼ Tcð4ÞB

cð3ÞB

ð3Þ

do not contain the volume and therefore provide
a direct and convenient comparison of experiment
and theory (30). The above equations are written
in a form that emphasizes this connection: The
left hand side can be measured in an experiment,
whereas the right hand side can be predicted with
lattice QCD. We use the notation m1,2,3 generi-
cally to refer to either side.

We now discuss the comparison of m1 and
m2 from experiment and theory (Fig. 3). The
experimental measurements (19) were made by
using the number of protons (p) and anti-protons
(–p) produced in the collision of Au ions around
90° to the beam axis with the impact parameter of
the collisions being less than 3 fm (31). p and –p
are in the range of 400 MeV/c to 800 MeV/c,
where c is the speed of light. This choice of mo-
mentum range is designed to obtain the purest
sample of p and p. A large fraction of p and p
is contained in this kinematic range. The effect
of finite reconstruction efficiency of p and p
has been shown to be negligible (19). The ex-

perimental values of Ss and ks2 are shown as a
function of

ffiffiffiffiffiffiffi
sNN

p
.

The lattice calculations (18) were carried out
by using two flavors of staggered quarks in
QCD. The lattice cutoff 1/a ≅ 960 to 1000 MeV
and the bare quark mass were tuned to give a
pion mass of about 230 MeV (32). These com-
putations were performed at mB = 0, and the
Taylor series coefficients of P/T 4 were used to
extrapolate m1 and m2 to the freeze-out condi-
tions by using appropriate order Padé approx-
imants to resum the series expansions. Because
lattice results are obtained in terms of T/Tc and
mB/T (Eq. 1), their extrapolation to the freeze-out
conditions required the input of Tc. The lattice
values were obtained by using Tc = 175 MeV,
which is compatible with indirect determina-
tions of Tc (10–13).

On the upper scales of Fig. 3, we also show
the mB and T values at chemical freeze-out that
correspond to the various

ffiffiffiffiffiffiffi
sNN

p
. For this, we

used the functional relationship between these
values from the hadron resonance gas model
using the yields of hadrons discussed in (16, 17).
Themodel predictions form1 (33) are also shown.
The hadron resonance gas model predictions
can be reproduced if baryon and anti-baryon
numbers are independently Poisson distributed.
Having established a connection between

ffiffiffiffiffiffiffi
sNN

p

and (T, mB), we compare the experimental data
on fluctuations with those predicted from lattice
QCD. Excellent agreement is seen between lattice
QCD predictions and experimental measurements
for all three beam energies. This marks the first
successful direct test of QCD against experimental
data in the nonperturbative context of bulk ha-
dronic matter. The agreement with the data are
yet another nontrivial indication that the fireball
produced in heavy ion collisions is in thermal and
chemical equilibrium at chemical freeze-out.

Setting the scale of bulk QCD. Lattice QCD
results for m1,2,3 are obtained for dimensionless
arguments T/Tc and mB/T, as shown in Eq. 2. For

a given value of
ffiffiffiffiffiffiffi
sNN

p
, the experimental ob-

servations are realized at the corresponding
chemical freeze-out, characterized by T and mB.
Thus, a comparison of the two requires a choice
of the scale, Tc. By varying this scale to obtain the
best fit between the QCD predictions and ex-
perimental measurements, we determined Tc for
the first time through an observable connected to
strongly interacting bulkmatter. The results are, of
course, subject to all the caveats expressed in the
previous section. The observable that we choose
for comparison is m3. The lattice computation of
this quantity has the smallest systematic uncer-
tainties among the three explored here and thus is
the best quantity to use to constrain Tc.

The comparison of m3 between experimental
results from Au ion collisions and lattice QCD
predictions is shown in Fig. 4A. This is an ex-
tension of Fig. 3, which shows a comparisonwith
m1 and m2. In this analysis, the results of m1, m2,
and m3 are consistent, as required in Eq. 3. The
new information here is that we show lattice pre-
dictions obtained with different values of Tc. The
errors on the experimental data points are statis-
tical (lines) and systematic (brackets) errors (19).
The errors bars on the lattice predictions are statis-
tical errors, with a cutoff of 1/a ≅ 960 to 1000MeV.
The lattice spacing effects and the effect of tuning
the bare quark mass are the main sources of re-
maining uncertainties in the predictions. These
are not parameterized as systematic uncertainties.
However, it is known that their effect is small at
the two highest values of

ffiffiffiffiffiffiffi
sNN

p
(18).

In order to arrive at a quantitative estimate
of the scale parameter Tc, we perform a stan-
dard statistical analysis. For each value of Tc,
we compute

c2ðTcÞ ¼ ∑ffiffiffiffiffiffi
sNN

p

½mexpt
3 ð ffiffiffiffiffiffiffi

sNN
p Þ & mQCD

3 ð ffiffiffiffiffiffiffi
sNN

p
,TcÞ%

Error2expt þ Error2QCD

2

ð4Þ

where the errors in the experimental and lattice
QCD quantities are obtained as explained above.
The lattice predictions are calculated for the grid
of Tc values (Fig. 4). The minimum of c2, cor-
responding to the most probable value of the
parameter being estimated, occurs at Tc = 175
MeV. The standard errors on the parameter are
the values of Tc for which c2 exceeds the mini-
mum value by unity. It is clear from Fig. 4B that
this is bounded by +5 and −10MeV. A piecewise
linear interpolation between the grid points yields
the more reliable error estimate, +1 and −7 MeV.
By comparing different interpolation schemes,
we found that the error estimate is stable. As a
result, we conclude that

Tc ¼ 175þ1
− 7 MeV: ð5Þ

The error estimates include systematic and sta-
tistical errors on experimental data but only sta-
tistical errors on the lattice QCD computations.

The result in Eq. 5 is compatible with current
indirect estimates of Tc that come from setting the

Fig. 4. Comparison of m3
from experiment and lattice
predictions, and the extrac-
tion of Tc. (A) ks/S of net-
proton distribution measured
in collisions of Au ions at
varying

ffiffiffiffiffiffiffi
sNN

p
and with an

impact parameter of less
than 3 fm. This is compared
with lattice QCD predictions
with cutoff 1/a ≅ 960 to
1000MeV for the correspond-
ing ratio of susceptibilities
extrapolated to the freeze-
out conditions by using dif-
ferent values of Tc. The lattice
results at each

ffiffiffiffiffiffi
sNN

p
are slight-

ly shifted for clarity in pre-
sentation. (B) The comparison
of experimental data and lat-
tice QCD predictions, shown through c2 as a function of Tc by using the definition given in Eq. 4. This
yields the estimate of Tc , and its errors are as discussed in the text.
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QCD with µ != 0 Sourendu Gupta

m

O(4) critical line

tri−critical point

phase transitions
surface of 1st order

Ising critical line

physical m

QCD critical point

µ

T

Figure 1: A conjectured phase diagram of QCD for Nf = 2 and for Nf = 2+1 when the strange quark mass
is not much smaller than ΛQCD. In the chiral limit there is a tri-critical point, from which emerges an Ising
critical line whose intersection with the plane of physical quark mass is the QCD critical point.

1. Introduction

QCD at finite baryon density is interesting because of two reasons: first that there is a program
of experimental studies covering five colliders, running and planned, which will look at this prob-
lem, and second, that it does not seem open to standard methods of attack in lattice gauge theory
due to a sign problem [1]. In this review I will bring together evidence that the problem is still
open to a fruitful attack using small modifications of the usual tools of lattice gauge theory, and
give some of the main physics results. The context of these first results is the conjectured phase
diagram of Figure 1 [2].

Any Monte Carlo integration process suffers from a sign problem if the integrand is not real
and positive definite. For the QCD action with a chemical potential on the baryon number, the
determinant of the Dirac operator, which is the quark part of the measure, obeys the condition

det(D+m+µγ0)
∗ = det(D+m−µ∗γ0), (1.1)

where D is the massless Dirac operator, m is the mass, µ is the baryon chemical potential, and ∗
denotes complex conjugation. For any generic complex chemical potential this shows that there
is a sign problem. For pure imaginary µ (including µ = 0), the determinant is real, and one can
further prove its positivity by considering its commutation with γ5.

This sign problem is not necessarily mild. Baryonless random matrix theory seems to predict
that for µ < mπ/2 the distribution of signs is Gaussian and becomes Lorentzian at larger µ [3]. In
either case the problem is severe. An earlier work had estimated the contours of the variance of
the phase of the quark determinant and found that this decreases at high temperatures, where the
problem could therefore become easier [4].

2

Sign	  Problem	  in	  Ladce: 

QCD with µ != 0 Sourendu Gupta

This suffers from a sign problem when µ != 0.
One approach [8] exploits the fact that sign problems are not inherent to the physics of a

system, but to specific representations. By a clever transformation of fields which amounts to
redefining the theory in terms of fluxes of particles along links, they reduce it to a form without
a sign problem, although the theory then becomes non-local. However, in this representation it
becomes amenable to a numerical attack using the “worm algorithm” [9]. This work then sets out
a finite-size scaling theory which describes the point at which it becomes energetically favourable
to add one more particle to the ground state. The simulation results allow the extraction of finite
size scaling parameters which can then be used to determine the phase diagram.

The other approach resurrects an old idea— the complex Langevin method, wherein one ad-
dresses sign problems by complexifying the fields while the noise remains real. Earlier works
had been plagued by runaway directions and associated numerical instabilities, now brought under
control by the use of adaptive step-size integrators. For a while a proof of convergence of such
methods seemed to be within reach [10]. However, it turns out that there may be a convergence to
the wrong result [11]. This is illustrated in Figure 2, which shows that the problem arises mainly at
small temperature and large chemical potential. Since this region is similar to that in which QCD
has large sign fluctuations [3], a better understanding of the origin of this problem may throw light
on applications to QCD.

In the next section we turn to the algorithm, first described in [13], which is now used by many
groups, and has begun to yield many consistency tests and, possibly, even contact with experiment.

3. The Madhava-Maclaurin series expansion

The pressure of QCD matter in a grand canonical ensemble can be expanded in a Madhava-
Maclaurin series around the point µ = 0 to obtain

P(T,µ) = P(T )+
µ2

2!
χ (2)(T )+

µ4

4!
χ (4)(T )+ · · · (3.1)

where all the coefficients are computed at µ = 0. P(T ) is the pressure at zero chemical potential,
χ (2)(T ) is called the quark number susceptibility (QNS) [12] and all the χ (n)(T ) are generically
called non-linear susceptibilities (NLS). It was suggested that the NLS could be measured in µ = 0
simulations, and the feasibility was demonstrated by computations in quenched QCD [13]. More
recently, within the last year, there have been attempts to compute these coefficients by simulating
QCD at imaginary chemical potential and fitting extrapolating functions to the data [14] (we will
return to a discussion of this later).

3.1 Computational effort

The χ (n)’s are combinations of quarks loops with insertions of γ0 up to n times [15]. These
quark loop traces are obtained through stochastic noise averages. One measure of the feasibility of
such measurements is to examine the signal to noise ratio in the measurements when the number
of noise vectors is Nv, i.e., the ratio of the mean and square root of the variance of such a trace in
one configuration. When the ratio is large, the measurement is easy. Such a measure was reported
using staggered quarks on a 4× 243 lattice at T/Tc = 0.75 and Nf = 2 when the quark mass is

4
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where U are the gauge link variables, ! and !̄ are the fer-
mionic variables, SG is the pure gauge action and SF is the
fermionic action which can be expressed in terms of the fer-
mionic matrix M "U# , SF!!̄M "U#! .
To describe QCD at finite density the grand canonical

partition function, Z(V ,T ,$)!Tr(e"(HQCD"$N) /T), where
N!%d3x!†! is the quark number operator, can be used. The
correct way to introduce a finite chemical potential $ on the
lattice "2# is to modify the temporal links appearing in the
integrand in Eq. &1' as follows:

Ut→ea$Ut &forward temporal link',

Ut
†→e"a$Ut

† &backward temporal link', &2'

where a is the lattice spacing. SG is left invariant by this
transformation but detM "U# gets a complex phase which
makes importance sampling, and therefore standard lattice
Monte Carlo simulations, unfeasible.
The situation is different when the chemical potential is

purely imaginary: Ut→eia$IUt , Ut
†→e"ia$IUt

† . This is
like adding a constant U(1) background field to the original
theory; detM "U# is again real and positive and simulations
are as easy as at $!0. The question then arises how simu-
lations at imaginary chemical potential may be of any help to
get physical insight in finite density QCD.
One possibility is analytic continuation, which should be

practical at relatively high temperature "13#. Z(V ,T ,$) is
expected to be an analytical even function of $ away from
phase transitions. For small enough $ one can write

log Z&$'!a0#a2$2#a4$4#O&$6', &3'

log Z&$ I'!a0"a2$ I
2#a4$ I

4#O&$ I
6'. &4'

Simulations at small $ I will thus allow a determination of
the expansion coefficients for the free energy and, analo-
gously, for other physical quantities, which can be cross-
checked with those obtained by reweighting techniques &see
"18–20# for further material on the reweighting approach'.
This method is expected to be useful in the high temperature
regime, where the first coefficients should be sensibly differ-
ent from zero; moreover, the region of interest for present
experiments "BNL Relativistic Heavy Ion Collider &RHIC'
CERN Large Hadron Collider &LHC'# is that of high tem-
peratures and small chemical potential, with $/T(0.1. This
method has been already investigated in the strong coupling
regime "13#, in the dimensionally reduced 3D QCD theory
"14#, and in full QCD with two flavors "16#. The Taylor
expansion coefficients can also be measured as derivatives
with respect to $ at $!0 "5–7#.
Z(V ,T ,i$ I) can also be used to reconstruct the canonical

partition function Z(V ,T ,n) at fixed quark number n "21#,
i.e., at fixed density:

Z&V ,T ,n '!Tr&e"HQCD /T)&N"n ''

!
1
2*

Tr! e"HQCD /T"
0

2*
d+ei+(N"n)#

!
1
2*"0

2*
d +e"i+nZ&V ,T ,i+T '. &5'

As n grows, the factor e"i+n oscillates more and more rap-
idly and the error in the numerical integration grows expo-
nentially with n: this makes the application of the method
difficult, especially at low temperatures, where Z(V ,T ,i$ I)
depends very weakly on $ I . The method has been applied in
QCD "11# and in the 2D Hubbard model "10,12#, where
Z(V ,T ,n) has been reconstructed up to n!6 "12#.
The study of the phase structure of QCD in the T-i$ I

plane is also interesting on its own, as we will discuss in the
next section, and will help us understand the ranges of ap-
plicability of analytic continuation.
Results reported in the present paper refer to QCD with

four degenerate staggered flavors of bare mass mq!0.05 on
a 164$4 lattice, where the phase transition is expected at a
critical coupling ,c$5.04 "22#. The standard hybrid Monte
Carlo &HMC' algorithm has been used.

III. THE PHASE DIAGRAM IN THE IMAGINARY
µ-TEMPERATURE SPACE

Let us write Z(+)-Z(V ,T ,i+T)!Tr(ei+Ne"HQCD /T).
Since N is a number operator, Z(+) is clearly periodic in +
with period 2*; moreover, a period 2*/3 is expected in the
confined phase, where only physical states with an N mul-
tiple of 3 are present. However, it has been shown by Rob-
erge and Weiss "21# that Z(+) is always periodic 2*/3, for
any physical temperature, and that the only difference be-
tween the low T and the high T phase should be a smooth,
analytic periodic behavior at low T, as predicted from a
strong coupling calculation, and a nonanalytic periodic be-
havior at high T with discontinuities in the first derivatives of
the free energy at +!(2*/3)(k#1/2), as predicted from a
weak coupling calculation. This suggests a very interesting
scenario for the phase diagram of QCD in the T-i$ I plane
which needs confirmation by lattice calculations.
In order to get more insight into the phase structure of the

theory, it is very useful to consider the phase of the trace of
the Polyakov loop P(x! ). Let us parametrize P(x! )
-%P(x! )%ei., and let /.0 be the average value of the phase.
In the pure gauge theory the average Polyakov loop is non-
zero only in the deconfined phase, where the center symme-
try is spontaneously broken and /.0!2k*/3, k!"1,0,1,
i.e., the Polyakov loop effective potential is flat in the con-
fined phase and develops three degenerate minima above the
critical temperature. In the presence of dynamical fermions
P(x! ) enters explicitly the fermionic determinant and Z3 is
broken: the effect of the determinant is therefore like that of
an external magnetic field which aligns the Polyakov loop
along /.0!0. In the high temperature phase the Z3 degen-
eracy is lifted and /.0!0 is the true vacuum.
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Shoot	  from	  imaginary: M.	  D’Elia,	  M-‐P,	  Lombardo,	  PRD	  2003 

Jens Braun, Jiunn-Wei Chen,	  JD,	  et	  al.	  	  	  PRL	  2013 Spin	  imbalanced	  Fermi	  gas	  on	  a	  ladce:	   



Divergence/singularity	  approaching	  CEP	  

2-‐point	  correlator: 

Correla@on	  length: 
@	  CEP 

Cri@cal	  opalescence	  (临界乳光)	  
As	  the	  CP	  approached,	  the	  density	  begin	  
to	  	  fluctuate	  over	  a	  large	  length	  scales,	  	  
comparable	  to	  the	  wave	  length	  of	  light.	  
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Effec@ve.	  Poten@al: 



Why	  study	  CEP	  of	  QCD	  

Acractor	  for	  thermodynamic	  trajectories	  	  
in	  HIC.	  	  C.	  Nonaka	  and	  M.	  Asakawa,	  PRC	  2005	   
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Slowing	  out	  of	  equilibrium	  near	  CEP	  
	  B.	  Berdnikov	  and	  K.	  Rajagopal,	  PRD	  2000	  	   

Most	  difficult	  for	  momentum	  
transport	  near	  CEP	  
Roy	  A.	  Lacey,	  et	  al.	  	  PRL	  2007	  	   

Crucial	  in	  diagram,	  test	  QCD	  in	  non-‐perturba@ve	  region 



Higher	  moments	  are	  crucial	  in	  HIC	  

Maximum	  correla@on	  length	  2~3	  fm	  (dynamical	  evolu@on,	  freeze	  out…) 

Non-‐monotonic	  func@ons	  of	  the	  collision	  
energy,	  higher	  moments	  more	  sensi@ve	  
signature	  of	  CP.	  	  	  	  	  	  	  	  	  M.	  Stephanov,	  PRL	  2009	  	   

Universally,	  sign	  change	  of	  Kurtosis	  indicate	  
that	  CP	  is	  close.	  	  	  	  	  	  	  	  	  M.	  Stephanov,	  PRL	  2011	  	   

negative in the sector bounded by two curved rays
H=t!" ¼ "const (corresponding to # # "0:32).

Also in Fig. 1 we show the dependence of $4 along a line
which could be thought of as representing a possible map-
ping of the freeze-out trajectory (Fig. 2) onto the tH plane.
Although the absolute value of the peak in $4 depends on
the proximity of the freeze-out curve to the critical point,
the ratio of the maximum to minimum along such an H ¼
const curve is a universal number, approximately equal to
$28 from Eq. (10).

The negative minimum is small relative to the positive
peak, but given the large size of the latter, Refs. [7,15], the
negative contribution to kurtosis may be significant. In
addition, the mapping of the freeze-out curve certainly
need not be H ¼ const, and the relative size of the positive
and negative peaks depends sensitively on that.

The trend described above appears to show in the recent
lattice data, Ref. [10], obtained using Padé resummation of
the truncated Taylor expansion in %B. As the chemical
potential is increased along the freeze-out curve, the 4th

moment of the baryon number fluctuations begins to
decrease, possibly turning negative, as the critical point
is approached (see Fig. 2 in Ref. [10]).
Another observation is that $$4 grows as we approach

the crossover line, corresponding to H ¼ 0, t > 0 on the
diagram in Fig. 1(a). On the QCD phase diagram the
freeze-out point will move in this direction if one reduces
the size of the colliding nuclei or selects more peripheral
collisions (the freeze-out occurs earlier, i.e., at higher T, in
a smaller system).
Experimental observables.—In this section we wish to

connect the results for the fluctuations of the order parame-
ter field & to the fluctuations of the observable quantities.
As an example we consider the fluctuations of the multi-
plicity of given charged particles, such as pions or protons.
For completeness we shall briefly rederive the results of

Ref. [7] using a simple model of fluctuations. The model
captures the most singular term in the contribution of the
critical point to the fluctuation observables. Consider a
given species of particle interacting with fluctuating criti-
cal mode field &. The infinitesimal change of the field "&
leads to a change of the effective mass of the particle by the
amount "m ¼ g"&. This could be considered a definition
of the coupling g. For example, the coupling of protons in
the sigma model is g& !pp. The fluctuations "fp of the
momentum space distribution function fp consist of the
pure statistical fluctuations "f0p around the equilibrium
distribution np for a particle of a given mass, which itself
fluctuates. This gives

"fp ¼ "f0p þ
@np
@m

g"&: (11)

Using this equation we can calculate the most singular
contribution from the critical fluctuations to the moments
or correlators of "fp. The fluctuation of the multiplicity
N ¼ Vd

R
p fp is given by

"N ¼ "N0 þ Vg"&d
Z
p

@np
@m

; (12)
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FIG. 1 (color online). (a) The density plot of the function
$4ðt; HÞ given by Eq. (10) obtained using Eq. (9) for the linear
parametric model Eqs. (6)–(8) and ! ¼ 1=3, " ¼ 5. The $4 < 0
region is red, the $4 > 0 is blue. (b) The dependence of $4 on t
along the vertical dashed green line on the density plot in (a).
This line is the simplest example of a possible mapping of the
freeze-out curve (see Fig. 2). The units of t, H, and $4 are
arbitrary.
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FIG. 2 (color online). A sketch of the phase diagram of QCD
with the freeze-out curve and a possible mapping of the Ising
coordinates t and H.
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II. SUSCEPTIBILITIES

For simplicity, we ignore all the constant factors (such as T,V prefactors), and write

Z = � d� exp[−V (�, h)] (14)

@ lnZ

@h

= 1

Z

� d� exp[−V ]−@V
@h

(15)

if the e↵ective potential takes the form

V = �

2

�

2 + �
3

�

3 + �
4

�

4 (16)

then the first order term can be get easily.

@ lnZ

@h

= −�′
2

< �2 > −�′
3

< �3 > −�′
4

< �4 >≡ −�′
2

⌃
2

− �′
3

⌃
3

− �′
4

⌃
4

(17)

And

@

2 lnZ

@h

2

= − 1

Z

2

�� d� exp[−V ]−@V
@h

�2 + 1

Z

� d� exp[−V ]��−@V
@h

�2 − @

2

V

@h

2

�
= − (�′

2

⌃
2

+ �′
3

⌃
3

+ �′
4

⌃
4

)2 + (�′
2

)2⌃
4

− �′′
2

⌃
2

− �′′
3

⌃
3

− �′′
4

⌃
4

+ (⌃
5

,⌃
6

,�)
= (�′

2

)2(⌃
4

−⌃2

2

) − �′′
2

⌃
2

− �′′
3

⌃
3

− �′′
4

⌃
4

(18)

As we can see, the expansion is a little crowded and less-confidence even we only go to the second order derivative.
So we make three tables first

@ lnZ[h]
@h

= Z

′[h]
Z[h]

@

2 lnZ[h]
@h

2

= −�Z ′[h]
Z[h] �

2 + Z

′′[h]
Z[h]

@

3 lnZ[h]
@h

3

= 2�Z ′[h]
Z[h] �

3 − 3Z ′′[h]
Z[h]

Z

′[h]
Z[h] +

Z

(3)[h]
Z[h]

@

4 lnZ[h]
@h

4

= −6�Z ′[h]
Z[h] �

4 + 12�Z ′[h]
Z[h] �

2

Z

′′[h]
Z[h] − 3�

Z

′′[h]
Z[h] �

2 − 4Z(3)[h]
Z[h]

Z

′[h]
Z[h] +

Z

(4)[h]
Z[h]

@

5 lnZ[h]
@h

5

= 24�Z ′
Z

�5 − 60�Z ′
Z

�3 Z

′′
Z

+ 30�Z ′′
Z

�2 Z

′
Z

+ 20�Z ′
Z

�2 Z

(3)
Z

− 10Z(3)
Z

Z

′′
Z

− 5Z(4)
Z

Z

′
Z

+ Z

(5)
Z

@

6 lnZ[h]
@h

6

= −120�Z ′
Z

�6 + 360�Z ′
Z

�4 Z

′′
Z

− 270�Z ′′
Z

�2 �Z ′
Z

�2 + 30�Z ′′
Z

�3 − 120�Z ′
Z

�3 Z

(3)
Z

+ 120
Z

(3)
Z

Z

′′
Z

Z

′
Z

− 10�Z(3)
Z

�2 + 30Z(4)
Z

�Z ′
Z

�2 − 15Z(4)
Z

Z

′′
Z

− 6Z(5)
Z

Z

′
Z

+ Z

(6)
Z

(19)

3 
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Phase	  diagram	  with	  tri-‐cri8cal	  point	  
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FIG. 4: Sign of 4 in the phase diagram with 2nd order phase transition.
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III. MODEL INDEPENDENT RESULTS

Here we discuss what we can learn from the polynomial e↵ective potential. To make a general conclusion, we start
with

 
2nd

= a

0

+ a

2

m

2 + a

4

m

4 + a

6

m

6 + · · · (12)

Start with Landau-Ginzburg effective potential, with order parameter m.  

long wavelength fluctuations, model-independent. 

2nd	  order	  phase	  transi@on 

1st	  order	  phase	  transi@on 

TCP	  locates	  at: 

2nd	  order	  line	  follows: 



Phase	  diagram	  with	  crossover	  and	  CEP	  

The Location of Critical Point in GN Model

Jian Deng1

1
School of Physics, Shandong University, Shandong 250100, People’s Republic of China

To make it clear

I. CP WITH CROSS OVER

let’s start with the e↵ective potential and its first order derivative

⌦(x) =
�

2

2
x

2 +
�

3

3
x

3 +
�

4

4
x

4 + · · · (1)

@⌦(x)

@x

= x(�
2

+ �

3

x + �

4

x

2) (2)

We note that the e↵ective potential has three possible extremes x

0

= 0, x

1/2

=
��3±

p
�

2
3�4�2�4

2�4
.

Step 1, Let �

4

> 0 to make the system stable.

Step 2, Let �

3

= 0 to see what will happen. We have x

1/2

= ±
p

�4�2�4

2�4
= ±

q
��2
�4

.

Step 3, To have more then one extreme, so as to see first order phase transition, we must set �

2

< 0. We will see
that

⌦(x
0

) = 0, ⌦(x
1

) = ⌦(x
2

) = ��

2

2

�

4

< ⌦(x
0

) (3)

It is just the situation of first order phase transition. So (�
3

= 0 with �

2

< 0) defines the first order phase transition
line. Then Critical Point (CP) locates at crossing of the two lines �

3

= 0, �

2

= 0.
Step 4, If �

3

= 0 with �

2

> 0, only one real root of the gap equation remains, it is x

0

= 0. Keep in mind that the
e↵ective potential is parametrized near one of its extreme points, we have defined x = M � M

0

, so x

0

= 0 does not
mean zero condensation.

Step 5, we may argue that the line �

3

= 0 is possible in the cross over regime, At the CP, it connects with the first
order phase transition line smoothly as show in the sketch Fig.(1).

Step 6, check other possibility of first order phase transition line beyond �

3

= 0. In general, the shape of e↵ective
potential with the parameters on the first order parameters looks like the shape of ”W”. There is one local maximum
and two local minima, the two local minima have the same value so that there is a jump of order parameter with
continuous changing of e↵ective potential. We can always assume that the form of Eq.(1) is got from the perturbative
expansion at the local maximum. That is �

2

< 0, and ⌦(x
1

) = ⌦(x
2

), which results 2�3

3�

2
4
(�2

3

� 4�

2

�

4

)
3
2 = 0. To have

three roots, we must have �

2

3

� 4�

2

�

4

> 0, so the only possibility is �

3

= 0 to define the first order phase transition
line, and the line ends at �

2

= 0.

II. LOCATION OF CP, FROM 2ND ORDER PHASE TRANSITION TO CROSS OVER

To make it sample, let try to figure out what happens at the CP with a perturbative presentation which truncates
at 6 order. Question: Why not up to 4th order? Answer: [1]

 
2nd

= f(m2) = a

0
0

+ a

0
2

m

2 + a

0
4

m

4 + a

0
6

m

6 + · · · (4)

 
crossover

= f(m2) +
�

2⇡

m

2 � �

⇡

m

= a

0
0

+ (a0
2

+
�

2⇡

)m2 + a

0
4

m

4 + a

0
6

m

6 � �

⇡

m + · · ·

= a

0

+ a

2

m

2 + a

4

m

4 + a

6

m

6 � �

⇡

m + · · ·

⌘ b

0

+ b

2

(m � m

0

)2 + b

3

(m � m

0

)3 + b

4

(m � m

0

)4 + b

5

(m � m

0

)5 + b

6

(m � m

0

)6 + · · · (5)

Effective potential for a crossover + critical end point   

1st	  order	  phase	  transi@on 
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Crossover	  line	  è	  	  	  	  	  	  	  	  	  	  	  	  	  	  ?	  	  	  	   

The location of CP in GN model

Jian Deng1

1
School of Physics, Shandong University, Shandong 250100, People’s Republic of China

To make it clear

I. CP WITH CROSS OVER

let’s start with the e⇤ective potential and its first order derivative

⇥(x) =
⇥2

2
x2 +

⇥3

3
x3 +

⇥4

4
x4 + · · · (1)

⌃⇥(x)

⌃x
= x(⇥2 + ⇥3x+ ⇥4x

2) (2)

We note that the e⇤ective potential has three possible extremes x0 = 0, x1/2 =
��3±

⌃
�2
3�4�2�4

2�4
.

Step 1, Let ⇥4 > 0 to make the system stable.

Step 2, Let ⇥3 = 0 to see what will happen. We have x1/2 = ±
⇤
�4�2�4

2�4
= ±

�
��2
�4

.

Step 3, To have more then one extreme, so as to see first order phase transition, we must set ⇥2 < 0. We will see
that

⇥(x0) = 0, ⇥(x1) = ⇥(x2) = �⇥2
2

⇥4
< ⇥(x0) (3)

It is just the situation of first order phase transition. So (⇥3 = 0 with ⇥2 < 0) defines the first order phase transition
line. Then Critical Point (CP) locates at crossing of the two lines ⇥3 = 0,⇥2 = 0.

Step 4, If ⇥3 = 0 with ⇥2 > 0, only one real root of the gap equation remains, it is x0 = 0. Keep in mind that the
e⇤ective potential is parametrized near one of its extreme point, we have defined x = M �M0, so x0 = 0 does not
mean zero condensation.

Step 5, we may argue that the line ⇥3 = 0 is possible in the cross over regime, At the CP, it connects the first order
phase transition line smoothly as show in the sketch Fig.

II. LOCATION OF CP, FROM 2ND ORDER PHASE TRANSITION TO CROSS OVER

To make it sample, let try to figure out what happens at the CP with a perturbative presentation which truncates
at 6 order. From all the models I played with

�2nd = f(m2) = a0 + a1 ⇤m2 + a2 ⇤m4 + · · · (4)

�crossover = f(m2) + g ⇤m2 + �m = a0 + a1 ⇤m2 + a2 ⇤m4 + g(m2) + �m+ · · ·
⇧ b0 + b1 ⇤ (m�m0)

2 + b2 ⇤ (m�m0)
3 + b3 ⇤ (m�m0)

4 + · · · (5)

CP locates at b1 = b2 = 0?

change	  sign	  across	  1st	  order	  line 

CEP	  locates	  at: 
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From	  TCP	  to	  CEP	  

CEP	  locates	  at: 

follows 

M. Stephanov, K. Rajagopal, E. Shuryak	  PRD	  1999 
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FIG. 4: Sign of 4 in the phase diagram with 2nd order phase transition.
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stand for di↵erent sign combination pattern. The index are coded as 4 = (+ + +), 3 = (+ � +), 2 = (� + +), 1(�� +),�1 =
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III. MODEL INDEPENDENT RESULTS

Here we discuss what we can learn from the polynomial e↵ective potential. To make a general conclusion, we start
with

 
2nd

= a

0

+ a

2

m

2 + a

4

m

4 + a

6

m

6 + · · · (12)a	  linear	  term 



Phase	  diagram	  with	  Gross-‐Neveu	  model	  	  

GN	  model,	  rela@vis@c,	  renormalizable,	  QCD	  like,	  1+1D…	  	   

Lagrangian: 

renormalize: 

M.	  Thies,	  J.	  Phys.	  A	  	  2006 
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Key	  features	  with	  GN	  model	  

The	  line	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  does	  NOT	  lead	  the	  crossover	  line!	  	  
but	  separates	  the	  posi@ve	  and	  nega@ve	  region	  of	  skewness,	  
guides	  the	  nega@ve	  region	  of	  kurtosis	  of	  the	  sigma	  field.	   
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Key	  features	  with	  GN	  model	  

The	   nega@ve	   kurtosis	   region	  
a l m o s t	   n o t	   t o u c h	   t h e	  
“hadronic”	  phase,	  except	  in	  the	  
region	  very	  close	  to	  the	  CEP.	  	  
It	   will	   be	   very	   hard	   for	   the	  
freeze	   out	   curve	   to	   enter	   the	  
nega@ve	  kurtosis	  region.	   
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From	  phase	  diagram	  to	  observables	  

where d is the degeneracy factor (e.g., number of spin or
charge states of the particle). Neglecting, for clarity and
simplicity, the effects of quantum statistics, i.e., assuming
np ! 1, we can use Poisson statistics for !N0. Using
additivity of the cumulants (their defining property), and
assuming !N0 and !" are uncorrelated, the contribution of
the critical fluctuations can be expressed in terms of the
corresponding moments of the critical field " fluctuations.
For example, the contribution to the 4th moment can be
expressed as (cf. Refs. [7,15])

hð!NÞ4ic ¼ hNiþ h"4
Vic

!
gd

T

Z
p

np
#p

"
4
þ & & & ; (13)

where #p ¼ ðdEp=dmÞ'1 is the relativistic gamma factor
of a particle with momentum p and mass m. The first term
on the right-hand side of Eq. (13) is the Poisson contribu-
tion. We neglected np ! 1 in the quantum statistics factor
ð1( npÞ for simplicity, and we denoted by ‘‘& & &’’ other
contributions, less singular at the critical point. The model
is admittedly crude, but it illustrates the mechanism and
correctly captures the most singular contribution near the
critical point.

In the region near the critical point where $4 ¼ h"4
Vic is

negative, the 4th cumulant of the fluctuations will be
smaller than its Poisson value, hNi. By how much will
depend sensitively on the correlation length (as %7),
i.e., on how close the freeze-out occurs to the critical point,
as well as on other factors (for protons, most significantly,
on the value of &B). We shall not attempt to estimate this
effect quantitatively in this Letter. The analysis of Ref. [15]
suggests, however, that this effect for protons can be
significant compared to the Poisson value already for
%) 2 fm.

Usual caveats apply: other (nontrivial) contributions to
moments which do not behave singularly at the critical
point can turn out to be relatively large. These include
initial geometry fluctuations, jets, and other nonequilib-
rium effects. In addition, charge conservation effects may
impose constraints on certain observables, such as total
charge fluctuations. It is beyond the scope of this Letter to
estimate these effects. A comprehensive review can be
found in Ref. [16]. The size of these background contribu-
tions could, in principle, be determined experimentally by
performing measurements away from the critical point.

We conclude by asking an obvious question: has the
effect of the negative kurtosis been observed? Data from
STAR indicate that at

ffiffiffi
s

p ¼ 19:6 GeV the ratio $4=$2

might be substantially smaller than its Poisson value 1,
see Fig. 6 in Ref. [17], while it is very close to 1 at higherffiffiffi
s

p
(smaller &B). Unfortunately, the statistics gathered in

the short run at
ffiffiffi
s

p ¼ 19:6 GeV are clearly not sufficient to
make a reliable conclusion. It would be interesting to see if
this effect persists with more statistics at this energy. If
confirmed, this result could indicate that the critical point is
close, at somewhat larger values of &B (smaller

ffiffiffi
s

p
). At

smaller values of
ffiffiffi
s

p
the effect should change sign, increas-

ing kurtosis above its Poisson value.
The author thanks O. Evdokimov for discussions.
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By	  coupling	  the	  cri@cal	  sigma	  field	  with	  the	  number	  
density,	  the	  fluctua@on	  and	  the	  cri@cality	  will	  be	  
transferred	  	  to	  the	  measurements 

Suscep@bili@es	  =	  Cumulants	   

M.	  Stephanov,	  PRL	  2011	  	   

Most	  singular	  part 

Par@@on	  func@on: 



Suscep8bility	  

Effec@ve	  poten@al:	   

Par@@on	  func@on: 

How	  about	  the	  prefactors? 

Grand	  Canonical	  ensemble 

16 



Gap	  equa8on	  and	  singularity	  

Effec@ve	  poten@al	   

Gap	  equa@on: 

Correla@on	  length	  dependence	  canceled	  in	  the	  singular	  parts.	   
Singularity	  from	  correla@on	  ==>	  singularity	  from	  discon@nuity.	   

Prefactor: 

17 

Global	  minimum,	  gap	  equa@on	  sa@sfied	  for	  all	  T	  and	  mu	  	   



Tree	  level	  contribu8on	  
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Tree	  level	  contribu8on	  
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Ra8o	  of	  the	  number	  suscep8bili8es	  

20 

Kurtosis	  from	  order	  parameter	  fluctua@on	  	   

There	  is	  a	  large	  region	  of	  nega@ve	  m2,	  beginning	  at	  the	  cri@cal	  point	  and	  opening	  
up	  into	  the	  crossover	  region.	  	  The	  nega@ve	  m2	  region	  overlaps	  with	  the	  “hadronic”	  
phase	  near	  the	  cri@cal	  point	  è	  non-‐monotonic	  feature,	  sign	  change! 
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Comparison	  with	  m2	  

STAR,	  PRL	  2014 

R.	  Gavai,	  S.	  Gupta,	  PLB	  2011 

Near	  the	  CEP,	  m2	  has	  a	  large	  peak	  and	  may	  
change	  its	  sign.	  The	  shape	  and	  magnitude	  
depend	  on	  how	  close	  the	  freeze	  out	  line	  to	  
the	  CEP.	  	  	  
More	  informa@on/other	  probes	  are	  needed	  
to	  localize	  the	  CEP,	  how	  about	  m1? 

Our	  model	  calcula@on	  are	  qualita@vely	  
agree	  with	  the	  ladce	  and	  HIC	  data,	  our	  
results	  are	  reasonable.	   
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Comparing	  with	  STAR	  new	  data	  
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Further	  study	  with	  3f-‐NJL	  model	  

Effec@ve	  
poten@al: 
Flavor	  
coupled: 
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Suscep8bili8es	  with	  3f-‐NJL	  model	  
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Along	  hypothe8cal	  Freeze-‐out	  lines	  
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Combina8on	  of	  m1	  and	  m2,	  common?	  
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•  also	  seen	  with	  Ising	  model	  
•  robust	  features	  of	  CEP	  
•  survive	  awer	  non-‐thermal	  effects	  
•  not	  seen	  for	  strangeness	  … 
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Combina8on	  of	  m1	  and	  m2,	  common?	  
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Singularity	  with	  Strangeness	  

No	  net	  strange	  quark 

Thermal	  suppression 

Singularity	  with	  	  
strangeness	  is	  NOT	  	  
visible	  except	  right	  
on	  the	  CEP. +	  [60]	  other	  diagrams 
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Suppressed	  singularity	  
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For	  mixing	  channels	  
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Summary	  

1.  Phase	  diagram	  with	  TCP	  and	  CEP	  are	  explored.	  With	  correla@on	  
length	  or	  discon@nuity,	  singularity	  near	  CEP	  is	  universal.	  	  

2.  Higher	  moments,	  suscep@bili@es	  and	  observables	  are	  discussed.	  
Predic@on	  with	  full	  tree-‐level	  correlators.	  	  	  

3.  A	  large	  region	  of	  nega@ve	  m2,	  overlaps	  with	  the	  hadronic	  phase	  
near	   CEP.	   Sign	   change	   of	   m2,	   and	   peak	   in	   m1	   indicate	   non-‐
monotonic	   behaviors.	   Flavor	   structure	   and	   possible	  
observables(B,	  Q,	  S)	  are	  discussed.	  	  	  	  

4.  Comparing	   with	   ladce	   and	   HIC	   data,	   non-‐monotonic	   features	  
are	   likely	   to	   be	   robust.	   The	   shape	   of	   m2	   vs.	   m1,	   and	   ordering	  
Tmin,m2>Tmax,m1>Tmax,m2>TCEP	  	  help	  to	  indicate	  the	  loca@on	  of	  CEP.	  
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Summary	  

1.  Phase	  diagram	  with	  TCP	  and	  CEP	  are	  explored.	  With	  correla@on	  
length	  or	  discon@nuity,	  singularity	  near	  CEP	  is	  universal.	  	  

2.  Higher	  moments,	  suscep@bili@es	  and	  observables	  are	  discussed.	  
Predic@on	  with	  full	  tree-‐level	  correlators.	  	  	  

3.  A	  large	  region	  of	  nega@ve	  m2,	  overlaps	  with	  the	  hadronic	  phase	  
near	   CEP.	   Sign	   change	   of	   m2,	   and	   peak	   in	   m1	   indicate	   non-‐
monotonic	   behaviors.	   Flavor	   structure	   and	   possible	  
observables(B,	  Q,	  S)	  are	  discussed.	  	  	  	  

4.  Comparing	   with	   ladce	   and	   HIC	   data,	   non-‐monotonic	   features	  
are	   likely	   to	   be	   robust.	   The	   shape	   of	   m2	   vs.	   m1,	   and	   ordering	  
Tmin,m2>Tmax,m1>Tmax,m2>TCEP	  	  help	  to	  indicate	  the	  loca@on	  of	  CEP.	  

Thanks 



Back up 
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Another	  way	  to	  check,	  Example	  with	  2nd	  
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with	  gap	  equa@on: 

With	   



Tree	  level	  contribu8on	  
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